In [10]:
ModelsDir = '/home/kate/Research/Property/Models/'
ModelName='regression_tmp'
In [11]:
import pandas as pd
import numpy as np
import pickle
import xgboost as xgb
import math
In [12]:
from sklearn.metrics import mean_absolute_error
def evalerror(preds, dtrain):
    labels = dtrain.get_label()
    return 'mae', mean_absolute_error(preds, labels)
In [13]:
data = pd.read_csv('/home/kate/Research/Property/Data/EDA_log_Severity_FI_dataset.csv', error_bad_lines=False, index_col=False)
In [14]:
featureset  = [
 'stories', 
 'units', 
 'multipolicyind', 
 'functionalreplacementcost', 
 'landlordind', 
 'burglaryalarmtype', 
 'propertymanager', 
 'gatedcommunityind', 
 'replacementcostdwellingind', 
 'equipmentbreakdown', 
 'cova_deductible', 
 'water_risk_sev_3_blk', 
 'fixture_leak_3_blk', 
 'rep_cost_3_blk', 
 'sqft', 
 'waterded', 
 'constructioncd_encd', 
 'multipolicyindumbrella', 
 'usagetype_encd', 
 'homegardcreditind', 
 'rentersinsurance', 
 'waterdetectiondevice', 
 'safeguardplusind', 
 'deadboltind', 
 'replacementvalueind', 
 'numberoffamilies', 
 'water_risk_fre_3_blk', 
 'pipe_froze_3_blk', 
 'ustructure_fail_3_blk', 
 'customer_cnt_active_policies_binned', 
 'ecy', 
 'yearbuilt', 
 'roofcd_encd', 
 'occupancy_encd', 
 'protectionclass', 
 'fire_risk_model_score', 
 'earthquakeumbrellaind', 
 'ordinanceorlawpct', 
 'sprinklersystem', 
 'firealarmtype', 
 'neighborhoodcrimewatchind', 
 'kitchenfireextinguisherind', 
 'poolind', 
 'serviceline', 
 'cova_limit', 
 'water_risk_3_blk', 
 'appl_fail_3_blk', 
 'plumb_leak_3_blk', 
 'waterh_fail_3_blk'
]
In [15]:
target_column = 'log_cova_il_nc_water' 
prediction_column = 'pred'
In [16]:
X=data[featureset]
y=data[target_column]
Dtrain = xgb.DMatrix(X.values,y)
In [17]:
nrounds = 600
esr=100
xgb_params = {
    'seed': 42,
    'eta': 0.01,
    'colsample_bytree': 0.9,
    'silent': 1,
    'subsample': 0.9,
    'objective': 'reg:linear',
    'eval_metric':'mae',
    'max_depth': 6,
    'gamma': 0.4,
    'min_child_weight': 4
}
In [18]:
xgb_model = xgb.train(xgb_params, Dtrain, nrounds, feval=evalerror)
xgb_model_file='%s%s.model'%(ModelsDir,ModelName)
pickle.dump(xgb_model, open(xgb_model_file, 'wb'))
In [19]:
data[prediction_column]=  xgb_model.predict(Dtrain, ntree_limit=xgb_model.best_ntree_limit+50)  
In [20]:
fmap_filename='%s/%s.fmap'%(ModelsDir,ModelName)
outfile = open(fmap_filename, 'w')
for i, feat in enumerate(featureset):
    outfile.write('{0}\t{1}\tq\n'.format(i, feat))
outfile.close()
In [21]:
#feature importance
feat_imp = pd.Series(xgb_model.get_score(fmap=fmap_filename,importance_type='weight')).to_frame()
feat_imp.columns=['Weight']
feat_imp = feat_imp.join(pd.Series(xgb_model.get_score(fmap=fmap_filename,importance_type='gain')).to_frame())
feat_imp.columns=['Weight','Gain']
feat_imp = feat_imp.join(pd.Series(xgb_model.get_score(fmap=fmap_filename,importance_type='cover')).to_frame())
feat_imp.columns=['Weight','Gain','Cover']
#feat_imp['fold']=i
feat_imp['FeatureName'] = feat_imp.index
feat_imp['ModelName'] = ModelName
#feat_imp_all = feat_imp_all.append(feat_imp, ignore_index=True)
feat_imp.sort_values(by=['Gain'], ascending=False)
Out[21]:
Weight Gain Cover FeatureName ModelName
waterded 64 7.763599 1629.125000 waterded regression_tmp
cova_deductible 527 7.512366 4026.474383 cova_deductible regression_tmp
earthquakeumbrellaind 8 7.218238 3671.250000 earthquakeumbrellaind regression_tmp
deadboltind 160 6.479719 2014.087500 deadboltind regression_tmp
fire_risk_model_score 390 6.449335 2718.056410 fire_risk_model_score regression_tmp
neighborhoodcrimewatchind 128 6.311047 3315.984375 neighborhoodcrimewatchind regression_tmp
occupancy_encd 171 6.287180 2382.964912 occupancy_encd regression_tmp
usagetype_encd 243 6.084383 2232.707819 usagetype_encd regression_tmp
poolind 65 5.985599 672.276923 poolind regression_tmp
pipe_froze_3_blk 489 5.919883 2503.404908 pipe_froze_3_blk regression_tmp
roofcd_encd 475 5.833628 2140.661053 roofcd_encd regression_tmp
water_risk_3_blk 1979 5.780554 1427.877716 water_risk_3_blk regression_tmp
cova_limit 735 5.760297 1902.733333 cova_limit regression_tmp
water_risk_sev_3_blk 2095 5.706560 1181.587589 water_risk_sev_3_blk regression_tmp
safeguardplusind 190 5.682634 1769.773684 safeguardplusind regression_tmp
units 92 5.648223 1049.358696 units regression_tmp
homegardcreditind 165 5.642596 595.563636 homegardcreditind regression_tmp
water_risk_fre_3_blk 2224 5.623068 1392.764838 water_risk_fre_3_blk regression_tmp
rentersinsurance 29 5.620957 3167.620690 rentersinsurance regression_tmp
waterh_fail_3_blk 485 5.591924 1343.177320 waterh_fail_3_blk regression_tmp
serviceline 76 5.566153 873.486842 serviceline regression_tmp
ordinanceorlawpct 403 5.544567 1263.645161 ordinanceorlawpct regression_tmp
sqft 1455 5.539029 953.168385 sqft regression_tmp
rep_cost_3_blk 137 5.536171 1149.043796 rep_cost_3_blk regression_tmp
yearbuilt 2062 5.527067 1350.727934 yearbuilt regression_tmp
equipmentbreakdown 159 5.478015 1671.471698 equipmentbreakdown regression_tmp
ecy 2465 5.421082 1469.896957 ecy regression_tmp
protectionclass 689 5.418968 1448.253991 protectionclass regression_tmp
plumb_leak_3_blk 494 5.413518 1319.759109 plumb_leak_3_blk regression_tmp
appl_fail_3_blk 444 5.398735 1064.853604 appl_fail_3_blk regression_tmp
customer_cnt_active_policies_binned 110 5.334650 1290.772727 customer_cnt_active_policies_binned regression_tmp
landlordind 127 5.240916 2154.755906 landlordind regression_tmp
sprinklersystem 76 5.217710 2679.407895 sprinklersystem regression_tmp
ustructure_fail_3_blk 374 5.195765 1198.010695 ustructure_fail_3_blk regression_tmp
multipolicyind 147 5.164165 463.068027 multipolicyind regression_tmp
constructioncd_encd 254 5.107704 2167.153543 constructioncd_encd regression_tmp
multipolicyindumbrella 56 4.956600 6116.928571 multipolicyindumbrella regression_tmp
fixture_leak_3_blk 504 4.921272 478.555556 fixture_leak_3_blk regression_tmp
replacementvalueind 28 4.857219 691.071429 replacementvalueind regression_tmp
replacementcostdwellingind 128 4.849553 232.070312 replacementcostdwellingind regression_tmp
propertymanager 43 4.830504 631.000000 propertymanager regression_tmp
numberoffamilies 8 4.803658 367.750000 numberoffamilies regression_tmp
stories 156 4.747548 951.448718 stories regression_tmp
gatedcommunityind 50 4.652670 1513.680000 gatedcommunityind regression_tmp
burglaryalarmtype 158 4.602129 282.126582 burglaryalarmtype regression_tmp
firealarmtype 149 4.568070 236.228188 firealarmtype regression_tmp
kitchenfireextinguisherind 202 4.293144 204.613861 kitchenfireextinguisherind regression_tmp
In [22]:
# from https://xiaoxiaowang87.github.io/monotonicity_constraint/
def partial_dependency(model, X,  feature):

    """
    Calculate the dependency (or partial dependency) of a response variable on a predictor (or multiple predictors)
    1. Sample a grid of values of a predictor for numeric continuous or all unique values for categorical or discrete continuous.
    2. For each value, replace every row of that predictor with this value, calculate the average prediction.
    """

    X_temp = X.copy()
    
    if feature in ['sqft','yearbuilt','water_risk_sev_3_blk', 'water_risk_3_blk','water_risk_fre_3_blk','ecy']:
        # continuous
        grid = np.linspace(np.percentile(X_temp[feature], 0.1),
                       np.percentile(X_temp[feature], 99.5),
                       50)
    else:
        #categorical
        grid = X_temp[feature].unique()

    y_pred = np.zeros(len(grid))

    for i, val in enumerate(grid):
        X_temp[feature] = val
        d_temp=xgb.DMatrix(X_temp.values)
        y_pred[i] = np.average(model.predict(d_temp,ntree_limit=model.best_ntree_limit+50))


    return grid, y_pred
In [23]:
pd_features = ['waterded',
'cova_deductible',
'earthquakeumbrellaind',
'deadboltind',
'fire_risk_model_score',
'neighborhoodcrimewatchind',
'occupancy_encd',
'usagetype_encd',
'poolind',
'pipe_froze_3_blk',
'roofcd_encd',
'water_risk_3_blk',
'cova_limit',
'water_risk_sev_3_blk',
'safeguardplusind',
'units',
'homegardcreditind',
'water_risk_fre_3_blk',
'rentersinsurance',
'waterh_fail_3_blk',
'serviceline',
'ordinanceorlawpct',
'sqft',
'rep_cost_3_blk',
'yearbuilt',
'equipmentbreakdown',
'ecy',
'protectionclass',
'plumb_leak_3_blk',
'appl_fail_3_blk',
'customer_cnt_active_policies_binned',
'landlordind',
'sprinklersystem',
'ustructure_fail_3_blk',
'multipolicyind',
'constructioncd_encd',
'multipolicyindumbrella',
'fixture_leak_3_blk',
'replacementvalueind',
'replacementcostdwellingind',
'propertymanager',
'numberoffamilies',
'stories',
'gatedcommunityind',
'burglaryalarmtype',
'firealarmtype',
'kitchenfireextinguisherind'
]
In [24]:
all_fm_pd = pd.DataFrame()
for f in pd_features:
    print('Processing:%s'%f)
    grid, y_pred = partial_dependency(xgb_model,X,f)
    fm_pd=pd.concat([pd.Series(grid), pd.Series(y_pred)], axis=1)
    fm_pd.columns=['value','pd']
    fm_pd['feature']=f
    all_fm_pd=all_fm_pd.append(fm_pd)
    all_fm_pd.to_csv('%s%s_PartialDependency.csv'%(ModelsDir,ModelName),header=True,index=False);
Processing:waterded
Processing:cova_deductible
Processing:earthquakeumbrellaind
Processing:deadboltind
Processing:fire_risk_model_score
Processing:neighborhoodcrimewatchind
Processing:occupancy_encd
Processing:usagetype_encd
Processing:poolind
Processing:pipe_froze_3_blk
Processing:roofcd_encd
Processing:water_risk_3_blk
Processing:cova_limit
Processing:water_risk_sev_3_blk
Processing:safeguardplusind
Processing:units
Processing:homegardcreditind
Processing:water_risk_fre_3_blk
Processing:rentersinsurance
Processing:waterh_fail_3_blk
Processing:serviceline
Processing:ordinanceorlawpct
Processing:sqft
Processing:rep_cost_3_blk
Processing:yearbuilt
Processing:equipmentbreakdown
Processing:ecy
Processing:protectionclass
Processing:plumb_leak_3_blk
Processing:appl_fail_3_blk
Processing:customer_cnt_active_policies_binned
Processing:landlordind
Processing:sprinklersystem
Processing:ustructure_fail_3_blk
Processing:multipolicyind
Processing:constructioncd_encd
Processing:multipolicyindumbrella
Processing:fixture_leak_3_blk
Processing:replacementvalueind
Processing:replacementcostdwellingind
Processing:propertymanager
Processing:numberoffamilies
Processing:stories
Processing:gatedcommunityind
Processing:burglaryalarmtype
Processing:firealarmtype
Processing:kitchenfireextinguisherind
In [25]:
%matplotlib inline
In [26]:
for f in pd_features:
    all_fm_pd[all_fm_pd['feature']==f].plot(kind='scatter',x='value', y='pd', title=f)
/home/kate/anaconda/lib/python3.6/site-packages/matplotlib/pyplot.py:537: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
  max_open_warning, RuntimeWarning)
In [27]:
for f in pd_features:
    print(all_fm_pd[all_fm_pd['feature']==f])
     value        pd   feature
0      0.0  8.640839  waterded
1   5000.0  8.544082  waterded
2   7500.0  8.540621  waterded
3  10000.0  8.534369  waterded
     value        pd          feature
0   1000.0  8.639799  cova_deductible
1    500.0  8.578134  cova_deductible
2    250.0  8.577389  cova_deductible
3   2500.0  8.743769  cova_deductible
4    100.0  8.566307  cova_deductible
5   5000.0  9.011680  cova_deductible
6  10000.0  9.011680  cova_deductible
7   2000.0  8.724646  cova_deductible
8   7500.0  9.011680  cova_deductible
   value        pd                feature
0    0.0  8.640263  earthquakeumbrellaind
1    1.0  8.631176  earthquakeumbrellaind
   value        pd      feature
0    1.0  8.652307  deadboltind
1    0.0  8.614455  deadboltind
    value        pd                feature
0     0.0  8.630379  fire_risk_model_score
1     2.0  8.735846  fire_risk_model_score
2     1.0  8.640746  fire_risk_model_score
3     4.0  8.743640  fire_risk_model_score
4    -1.0  8.623397  fire_risk_model_score
5     5.0  8.736809  fire_risk_model_score
6     3.0  8.737392  fire_risk_model_score
7     6.0  8.802670  fire_risk_model_score
8     7.0  8.802670  fire_risk_model_score
9    12.0  8.802670  fire_risk_model_score
10   11.0  8.802670  fire_risk_model_score
   value        pd                    feature
0    0.0  8.643614  neighborhoodcrimewatchind
1    1.0  8.512907  neighborhoodcrimewatchind
   value        pd         feature
0    2.0  8.551072  occupancy_encd
1    1.0  8.644658  occupancy_encd
   value        pd         feature
0    6.0  8.644048  usagetype_encd
1    7.0  8.639596  usagetype_encd
2    2.0  8.541696  usagetype_encd
3    3.0  8.598352  usagetype_encd
4    5.0  8.415483  usagetype_encd
5    4.0  8.396861  usagetype_encd
   value        pd  feature
0    0.0  8.640002  poolind
1    1.0  8.643076  poolind
   value        pd           feature
0    0.0  8.686685  pipe_froze_3_blk
1    2.0  8.617344  pipe_froze_3_blk
2    5.0  8.537228  pipe_froze_3_blk
3    1.0  8.605277  pipe_froze_3_blk
4    3.0  8.643702  pipe_froze_3_blk
5    4.0  8.591632  pipe_froze_3_blk
   value        pd      feature
0    7.0  8.644799  roofcd_encd
1    8.0  8.653890  roofcd_encd
2    5.0  8.645969  roofcd_encd
3    6.0  8.605610  roofcd_encd
4    1.0  8.721090  roofcd_encd
5    2.0  8.715100  roofcd_encd
6    3.0  8.670020  roofcd_encd
         value        pd           feature
0    47.000000  8.601516  water_risk_3_blk
1    60.861633  8.626023  water_risk_3_blk
2    74.723265  8.565128  water_risk_3_blk
3    88.584898  8.552807  water_risk_3_blk
4   102.446531  8.566797  water_risk_3_blk
5   116.308163  8.584528  water_risk_3_blk
6   130.169796  8.592785  water_risk_3_blk
7   144.031429  8.619873  water_risk_3_blk
8   157.893061  8.612967  water_risk_3_blk
9   171.754694  8.606537  water_risk_3_blk
10  185.616327  8.641638  water_risk_3_blk
11  199.477959  8.626482  water_risk_3_blk
12  213.339592  8.635557  water_risk_3_blk
13  227.201224  8.621341  water_risk_3_blk
14  241.062857  8.627428  water_risk_3_blk
15  254.924490  8.622991  water_risk_3_blk
16  268.786122  8.636277  water_risk_3_blk
17  282.647755  8.627592  water_risk_3_blk
18  296.509388  8.615119  water_risk_3_blk
19  310.371020  8.602347  water_risk_3_blk
20  324.232653  8.652007  water_risk_3_blk
21  338.094286  8.674499  water_risk_3_blk
22  351.955918  8.681980  water_risk_3_blk
23  365.817551  8.672709  water_risk_3_blk
24  379.679184  8.671893  water_risk_3_blk
25  393.540816  8.671418  water_risk_3_blk
26  407.402449  8.659781  water_risk_3_blk
27  421.264082  8.664042  water_risk_3_blk
28  435.125714  8.656680  water_risk_3_blk
29  448.987347  8.677299  water_risk_3_blk
30  462.848980  8.677020  water_risk_3_blk
31  476.710612  8.669099  water_risk_3_blk
32  490.572245  8.644658  water_risk_3_blk
33  504.433878  8.643336  water_risk_3_blk
34  518.295510  8.643196  water_risk_3_blk
35  532.157143  8.643286  water_risk_3_blk
36  546.018776  8.640232  water_risk_3_blk
37  559.880408  8.634100  water_risk_3_blk
38  573.742041  8.630841  water_risk_3_blk
39  587.603673  8.615451  water_risk_3_blk
40  601.465306  8.609901  water_risk_3_blk
41  615.326939  8.586990  water_risk_3_blk
42  629.188571  8.581757  water_risk_3_blk
43  643.050204  8.581721  water_risk_3_blk
44  656.911837  8.581290  water_risk_3_blk
45  670.773469  8.587379  water_risk_3_blk
46  684.635102  8.611751  water_risk_3_blk
47  698.496735  8.652578  water_risk_3_blk
48  712.358367  8.656204  water_risk_3_blk
49  726.220000  8.655569  water_risk_3_blk
        value        pd     feature
0    300000.0  8.596481  cova_limit
1    200000.0  8.586347  cova_limit
2    900000.0  8.689759  cova_limit
3    400000.0  8.645457  cova_limit
4    500000.0  8.651547  cova_limit
5    600000.0  8.652952  cova_limit
6   1200000.0  8.666142  cova_limit
7    100000.0  8.591815  cova_limit
8    700000.0  8.659352  cova_limit
9    800000.0  8.686501  cova_limit
10  1300000.0  8.679717  cova_limit
11  1000000.0  8.677889  cova_limit
         value        pd               feature
0    51.956000  8.467585  water_risk_sev_3_blk
1    55.344653  8.525570  water_risk_sev_3_blk
2    58.733306  8.537767  water_risk_sev_3_blk
3    62.121959  8.537011  water_risk_sev_3_blk
4    65.510612  8.545470  water_risk_sev_3_blk
5    68.899265  8.549258  water_risk_sev_3_blk
6    72.287918  8.550710  water_risk_sev_3_blk
7    75.676571  8.547097  water_risk_sev_3_blk
8    79.065224  8.542514  water_risk_sev_3_blk
9    82.453878  8.546350  water_risk_sev_3_blk
10   85.842531  8.551996  water_risk_sev_3_blk
11   89.231184  8.558320  water_risk_sev_3_blk
12   92.619837  8.564461  water_risk_sev_3_blk
13   96.008490  8.576102  water_risk_sev_3_blk
14   99.397143  8.569777  water_risk_sev_3_blk
15  102.785796  8.569557  water_risk_sev_3_blk
16  106.174449  8.569798  water_risk_sev_3_blk
17  109.563102  8.575377  water_risk_sev_3_blk
18  112.951755  8.622600  water_risk_sev_3_blk
19  116.340408  8.618674  water_risk_sev_3_blk
20  119.729061  8.676203  water_risk_sev_3_blk
21  123.117714  8.672645  water_risk_sev_3_blk
22  126.506367  8.684298  water_risk_sev_3_blk
23  129.895020  8.685672  water_risk_sev_3_blk
24  133.283673  8.685327  water_risk_sev_3_blk
25  136.672327  8.679271  water_risk_sev_3_blk
26  140.060980  8.679793  water_risk_sev_3_blk
27  143.449633  8.684069  water_risk_sev_3_blk
28  146.838286  8.685077  water_risk_sev_3_blk
29  150.226939  8.685311  water_risk_sev_3_blk
30  153.615592  8.671535  water_risk_sev_3_blk
31  157.004245  8.674883  water_risk_sev_3_blk
32  160.392898  8.674489  water_risk_sev_3_blk
33  163.781551  8.674876  water_risk_sev_3_blk
34  167.170204  8.679678  water_risk_sev_3_blk
35  170.558857  8.681505  water_risk_sev_3_blk
36  173.947510  8.671969  water_risk_sev_3_blk
37  177.336163  8.625801  water_risk_sev_3_blk
38  180.724816  8.603316  water_risk_sev_3_blk
39  184.113469  8.614919  water_risk_sev_3_blk
40  187.502122  8.619002  water_risk_sev_3_blk
41  190.890776  8.638643  water_risk_sev_3_blk
42  194.279429  8.648097  water_risk_sev_3_blk
43  197.668082  8.632175  water_risk_sev_3_blk
44  201.056735  8.614784  water_risk_sev_3_blk
45  204.445388  8.616906  water_risk_sev_3_blk
46  207.834041  8.563883  water_risk_sev_3_blk
47  211.222694  8.565230  water_risk_sev_3_blk
48  214.611347  8.576135  water_risk_sev_3_blk
49  218.000000  8.554901  water_risk_sev_3_blk
   value        pd           feature
0    0.0  8.626305  safeguardplusind
1    1.0  8.657999  safeguardplusind
   value        pd feature
0    1.0  8.640230   units
1    4.0  8.624802   units
2    3.0  8.632705   units
3    2.0  8.627629   units
   value        pd            feature
0    0.0  8.643387  homegardcreditind
1    1.0  8.632818  homegardcreditind
         value        pd               feature
0    31.956000  8.470302  water_risk_fre_3_blk
1    44.105878  8.465382  water_risk_fre_3_blk
2    56.255755  8.539700  water_risk_fre_3_blk
3    68.405633  8.617825  water_risk_fre_3_blk
4    80.555510  8.670790  water_risk_fre_3_blk
5    92.705388  8.686066  water_risk_fre_3_blk
6   104.855265  8.661204  water_risk_fre_3_blk
7   117.005143  8.674662  water_risk_fre_3_blk
8   129.155020  8.656388  water_risk_fre_3_blk
9   141.304898  8.592773  water_risk_fre_3_blk
10  153.454776  8.594116  water_risk_fre_3_blk
11  165.604653  8.610690  water_risk_fre_3_blk
12  177.754531  8.619699  water_risk_fre_3_blk
13  189.904408  8.613970  water_risk_fre_3_blk
14  202.054286  8.613931  water_risk_fre_3_blk
15  214.204163  8.619976  water_risk_fre_3_blk
16  226.354041  8.618053  water_risk_fre_3_blk
17  238.503918  8.629555  water_risk_fre_3_blk
18  250.653796  8.591774  water_risk_fre_3_blk
19  262.803673  8.593170  water_risk_fre_3_blk
20  274.953551  8.602857  water_risk_fre_3_blk
21  287.103429  8.590428  water_risk_fre_3_blk
22  299.253306  8.620789  water_risk_fre_3_blk
23  311.403184  8.602389  water_risk_fre_3_blk
24  323.553061  8.585248  water_risk_fre_3_blk
25  335.702939  8.587877  water_risk_fre_3_blk
26  347.852816  8.588391  water_risk_fre_3_blk
27  360.002694  8.578098  water_risk_fre_3_blk
28  372.152571  8.602134  water_risk_fre_3_blk
29  384.302449  8.604873  water_risk_fre_3_blk
30  396.452327  8.604285  water_risk_fre_3_blk
31  408.602204  8.612465  water_risk_fre_3_blk
32  420.752082  8.550839  water_risk_fre_3_blk
33  432.901959  8.551338  water_risk_fre_3_blk
34  445.051837  8.561361  water_risk_fre_3_blk
35  457.201714  8.561541  water_risk_fre_3_blk
36  469.351592  8.568036  water_risk_fre_3_blk
37  481.501469  8.557750  water_risk_fre_3_blk
38  493.651347  8.602774  water_risk_fre_3_blk
39  505.801224  8.605520  water_risk_fre_3_blk
40  517.951102  8.605520  water_risk_fre_3_blk
41  530.100980  8.604934  water_risk_fre_3_blk
42  542.250857  8.596053  water_risk_fre_3_blk
43  554.400735  8.592690  water_risk_fre_3_blk
44  566.550612  8.584234  water_risk_fre_3_blk
45  578.700490  8.584228  water_risk_fre_3_blk
46  590.850367  8.584171  water_risk_fre_3_blk
47  603.000245  8.584171  water_risk_fre_3_blk
48  615.150122  8.584171  water_risk_fre_3_blk
49  627.300000  8.584146  water_risk_fre_3_blk
   value        pd           feature
0    0.0  8.640488  rentersinsurance
1    1.0  8.596459  rentersinsurance
   value        pd            feature
0    1.0  8.647379  waterh_fail_3_blk
1    4.0  8.577621  waterh_fail_3_blk
2    0.0  8.651103  waterh_fail_3_blk
3    5.0  8.582728  waterh_fail_3_blk
4    2.0  8.646167  waterh_fail_3_blk
5    3.0  8.579963  waterh_fail_3_blk
   value        pd      feature
0    0.0  8.642485  serviceline
1    1.0  8.630320  serviceline
    value        pd            feature
0    10.0  8.643280  ordinanceorlawpct
1    25.0  8.587932  ordinanceorlawpct
2     0.0  8.644020  ordinanceorlawpct
3    20.0  8.625257  ordinanceorlawpct
4    65.0  8.540836  ordinanceorlawpct
5    15.0  8.637439  ordinanceorlawpct
6    90.0  8.362936  ordinanceorlawpct
7    40.0  8.577458  ordinanceorlawpct
8    50.0  8.568460  ordinanceorlawpct
9    75.0  8.532159  ordinanceorlawpct
10  100.0  8.373594  ordinanceorlawpct
          value        pd feature
0    800.000000  8.607800    sqft
1    885.714286  8.566347    sqft
2    971.428571  8.558048    sqft
3   1057.142857  8.556896    sqft
4   1142.857143  8.556891    sqft
5   1228.571429  8.585508    sqft
6   1314.285714  8.617987    sqft
7   1400.000000  8.615809    sqft
8   1485.714286  8.632596    sqft
9   1571.428571  8.635659    sqft
10  1657.142857  8.640177    sqft
11  1742.857143  8.640234    sqft
12  1828.571429  8.644299    sqft
13  1914.285714  8.648813    sqft
14  2000.000000  8.646869    sqft
15  2085.714286  8.648471    sqft
16  2171.428571  8.647385    sqft
17  2257.142857  8.645766    sqft
18  2342.857143  8.645761    sqft
19  2428.571429  8.651671    sqft
20  2514.285714  8.654020    sqft
21  2600.000000  8.656938    sqft
22  2685.714286  8.657079    sqft
23  2771.428571  8.654813    sqft
24  2857.142857  8.655519    sqft
25  2942.857143  8.655449    sqft
26  3028.571429  8.656541    sqft
27  3114.285714  8.656254    sqft
28  3200.000000  8.657068    sqft
29  3285.714286  8.657187    sqft
30  3371.428571  8.657618    sqft
31  3457.142857  8.657632    sqft
32  3542.857143  8.673852    sqft
33  3628.571429  8.673852    sqft
34  3714.285714  8.673795    sqft
35  3800.000000  8.665310    sqft
36  3885.714286  8.665310    sqft
37  3971.428571  8.665310    sqft
38  4057.142857  8.665310    sqft
39  4142.857143  8.665310    sqft
40  4228.571429  8.665310    sqft
41  4314.285714  8.665310    sqft
42  4400.000000  8.665310    sqft
43  4485.714286  8.665310    sqft
44  4571.428571  8.612711    sqft
45  4657.142857  8.612711    sqft
46  4742.857143  8.612711    sqft
47  4828.571429  8.612711    sqft
48  4914.285714  8.612711    sqft
49  5000.000000  8.612711    sqft
   value        pd         feature
0    4.0  8.626205  rep_cost_3_blk
1    1.0  8.586179  rep_cost_3_blk
2    5.0  8.641853  rep_cost_3_blk
3    3.0  8.628739  rep_cost_3_blk
4    0.0  8.575003  rep_cost_3_blk
5    2.0  8.621755  rep_cost_3_blk
          value        pd    feature
0   1900.000000  8.518772  yearbuilt
1   1902.346939  8.518772  yearbuilt
2   1904.693878  8.519367  yearbuilt
3   1907.040816  8.519367  yearbuilt
4   1909.387755  8.526848  yearbuilt
5   1911.734694  8.526848  yearbuilt
6   1914.081633  8.529383  yearbuilt
7   1916.428571  8.529424  yearbuilt
8   1918.775510  8.529175  yearbuilt
9   1921.122449  8.529282  yearbuilt
10  1923.469388  8.531414  yearbuilt
11  1925.816327  8.532071  yearbuilt
12  1928.163265  8.534081  yearbuilt
13  1930.510204  8.534081  yearbuilt
14  1932.857143  8.538530  yearbuilt
15  1935.204082  8.538632  yearbuilt
16  1937.551020  8.538231  yearbuilt
17  1939.897959  8.538231  yearbuilt
18  1942.244898  8.538231  yearbuilt
19  1944.591837  8.534580  yearbuilt
20  1946.938776  8.546323  yearbuilt
21  1949.285714  8.544759  yearbuilt
22  1951.632653  8.534005  yearbuilt
23  1953.979592  8.655656  yearbuilt
24  1956.326531  8.685094  yearbuilt
25  1958.673469  8.707695  yearbuilt
26  1961.020408  8.746974  yearbuilt
27  1963.367347  8.756317  yearbuilt
28  1965.714286  8.728780  yearbuilt
29  1968.061224  8.735069  yearbuilt
30  1970.408163  8.731332  yearbuilt
31  1972.755102  8.730549  yearbuilt
32  1975.102041  8.722762  yearbuilt
33  1977.448980  8.717068  yearbuilt
34  1979.795918  8.664371  yearbuilt
35  1982.142857  8.601159  yearbuilt
36  1984.489796  8.608254  yearbuilt
37  1986.836735  8.622234  yearbuilt
38  1989.183673  8.617929  yearbuilt
39  1991.530612  8.611524  yearbuilt
40  1993.877551  8.607491  yearbuilt
41  1996.224490  8.602300  yearbuilt
42  1998.571429  8.603346  yearbuilt
43  2000.918367  8.599059  yearbuilt
44  2003.265306  8.584052  yearbuilt
45  2005.612245  8.577878  yearbuilt
46  2007.959184  8.587106  yearbuilt
47  2010.306122  8.578694  yearbuilt
48  2012.653061  8.493710  yearbuilt
49  2015.000000  8.493710  yearbuilt
   value        pd             feature
0    0.0  8.644302  equipmentbreakdown
1    1.0  8.608632  equipmentbreakdown
       value        pd feature
0   0.027300  8.718957     ecy
1   0.047080  8.626265     ecy
2   0.066859  8.653682     ecy
3   0.086639  8.615612     ecy
4   0.106418  8.603455     ecy
5   0.126198  8.608837     ecy
6   0.145978  8.653477     ecy
7   0.165757  8.662369     ecy
8   0.185537  8.667852     ecy
9   0.205316  8.664793     ecy
10  0.225096  8.707657     ecy
11  0.244876  8.583220     ecy
12  0.264655  8.577060     ecy
13  0.284435  8.583035     ecy
14  0.304214  8.583223     ecy
15  0.323994  8.594275     ecy
16  0.343773  8.601581     ecy
17  0.363553  8.601801     ecy
18  0.383333  8.604709     ecy
19  0.403112  8.604498     ecy
20  0.422892  8.613037     ecy
21  0.442671  8.633576     ecy
22  0.462451  8.639337     ecy
23  0.482231  8.638928     ecy
24  0.502010  8.639782     ecy
25  0.521790  8.637148     ecy
26  0.541569  8.637073     ecy
27  0.561349  8.639471     ecy
28  0.581129  8.642282     ecy
29  0.600908  8.641462     ecy
30  0.620688  8.640141     ecy
31  0.640467  8.635337     ecy
32  0.660247  8.629288     ecy
33  0.680027  8.616117     ecy
34  0.699806  8.610979     ecy
35  0.719586  8.614637     ecy
36  0.739365  8.610812     ecy
37  0.759145  8.633683     ecy
38  0.778924  8.656791     ecy
39  0.798704  8.658794     ecy
40  0.818484  8.674058     ecy
41  0.838263  8.670727     ecy
42  0.858043  8.671667     ecy
43  0.877822  8.670592     ecy
44  0.897602  8.679811     ecy
45  0.917382  8.682462     ecy
46  0.937161  8.682871     ecy
47  0.956941  8.632831     ecy
48  0.976720  8.641609     ecy
49  0.996500  8.722139     ecy
    value        pd          feature
0     3.0  8.617031  protectionclass
1     4.0  8.664872  protectionclass
2     6.0  8.684011  protectionclass
3     2.0  8.630712  protectionclass
4     7.0  8.666869  protectionclass
5     5.0  8.658376  protectionclass
6     1.0  8.614574  protectionclass
7     8.0  8.606847  protectionclass
8     0.0  8.603853  protectionclass
9    10.0  8.606847  protectionclass
10    9.0  8.606847  protectionclass
   value        pd           feature
0    5.0  8.634333  plumb_leak_3_blk
1    4.0  8.647377  plumb_leak_3_blk
2    1.0  8.627300  plumb_leak_3_blk
3    3.0  8.646498  plumb_leak_3_blk
4    2.0  8.641496  plumb_leak_3_blk
5    0.0  8.318430  plumb_leak_3_blk
   value        pd          feature
0    5.0  8.645920  appl_fail_3_blk
1    3.0  8.639073  appl_fail_3_blk
2    1.0  8.604736  appl_fail_3_blk
3    2.0  8.659334  appl_fail_3_blk
4    4.0  8.639711  appl_fail_3_blk
5    0.0  8.596484  appl_fail_3_blk
   value        pd                              feature
0    1.0  8.639337  customer_cnt_active_policies_binned
1   10.0  8.646735  customer_cnt_active_policies_binned
2   15.0  8.628233  customer_cnt_active_policies_binned
3   20.0  8.631356  customer_cnt_active_policies_binned
4   30.0  8.631356  customer_cnt_active_policies_binned
   value        pd      feature
0    0.0  8.643543  landlordind
1    1.0  8.583156  landlordind
   value        pd          feature
0    0.0  8.639407  sprinklersystem
1    1.0  8.667872  sprinklersystem
   value        pd                feature
0    5.0  8.633756  ustructure_fail_3_blk
1    4.0  8.648815  ustructure_fail_3_blk
2    2.0  8.658472  ustructure_fail_3_blk
3    1.0  8.659457  ustructure_fail_3_blk
4    0.0  8.670239  ustructure_fail_3_blk
5    3.0  8.645672  ustructure_fail_3_blk
   value        pd         feature
0    0.0  8.641262  multipolicyind
1    1.0  8.635032  multipolicyind
   value        pd              feature
0    5.0  8.628505  constructioncd_encd
1    1.0  8.666110  constructioncd_encd
2    4.0  8.661712  constructioncd_encd
3    3.0  8.661192  constructioncd_encd
4    2.0  8.649323  constructioncd_encd
   value        pd                 feature
0    0.0  8.639760  multipolicyindumbrella
1    1.0  8.756115  multipolicyindumbrella
   value        pd             feature
0    1.0  8.638518  fixture_leak_3_blk
1    4.0  8.626209  fixture_leak_3_blk
2    2.0  8.643721  fixture_leak_3_blk
3    3.0  8.638265  fixture_leak_3_blk
4    0.0  8.640883  fixture_leak_3_blk
5    5.0  8.641697  fixture_leak_3_blk
   value        pd              feature
0    0.0  8.640406  replacementvalueind
1    1.0  8.636573  replacementvalueind
   value        pd                     feature
0    1.0  8.639285  replacementcostdwellingind
1    0.0  8.639847  replacementcostdwellingind
   value        pd          feature
0    0.0  8.640510  propertymanager
1    1.0  8.618322  propertymanager
   value        pd           feature
0    1.0  8.640299  numberoffamilies
1    4.0  8.639118  numberoffamilies
2    3.0  8.639118  numberoffamilies
3    2.0  8.639296  numberoffamilies
   value        pd  feature
0    1.0  8.638891  stories
1    2.0  8.643860  stories
2    3.0  8.653841  stories
   value        pd            feature
0    0.0  8.639936  gatedcommunityind
1    1.0  8.644088  gatedcommunityind
   value        pd            feature
0    0.0  8.641005  burglaryalarmtype
1    1.0  8.638940  burglaryalarmtype
   value        pd        feature
0    0.0  8.637622  firealarmtype
1    1.0  8.641053  firealarmtype
   value        pd                     feature
0    1.0  8.642175  kitchenfireextinguisherind
1    0.0  8.638900  kitchenfireextinguisherind